
1/18© 2003-2006 DOMOLOGIC Home Automation GmbH

JControl/SmartDisplay
JAVA PROGRAMMABLE GRAPHIC LC-DISPLAY WITH 128X64 PIXEL,

64K FLASH MEMORY, ANALOG KEYBOARD SUPPORT, RS232-
INTERFACE, I²C-INTERFACE, 12 GPIO AND SOFT REALTIME SUPPORT

� Virtual Machine Core
� 8 Bit JAVA™ bytecode execution engine
� 16 Bit processing word length
� Max. 256 constant pool entries
� 2.5k JAVA heap memory
� 2 MIPS native core speed
� Automatic garbage collection
� Multi-threading support with extensions

for soft realtime execution

� Display
� 128x64 pixel graphic LCD
� FSTN technology
� Optional backlight
� Viewing area: 46.0 x 23.0 mm
� Dot pitch: 0.36 mm
� Display contrast and backlight adjustable

by software

� Flash Memory
� up to 4 banks with 64k each
� 128 or 256 byte per sector
� > 10,000 erase/write cycles

� Analog Keyboard
� Decoder for up to 10 keys
� Simple and cost-effective design with

resistors
� Only one GPIO occupied

� Power-Supply
� 3.3V or 5V power supply
� Current consumption: max. 25mA

(with backlight)

� Buzzer Support
� Controlled by PWM output

� RS232
� 5-Wire RS232-Interface
� 11 different baud rates from 300 up to

250.000bps
� None, even or odd parity
� Automatic flow control by XON/XOFF or

RTS/CTS

� I²C/SMBus Communication
� Master mode
� 7 and 10 Bit addressing modes

� I/O-Pins
� Up to 12 General-Purpose I/O Pins

� 2 I/Os usable as PWM outputs
� 8 I/Os usable as Analog inputs

� Physical Dimensions
� Size: 76.2x41.9x9.5mm
� Weight: 20g

Version 1.3, September 2005

JControl/SmartDisplay

2/18 © 2003-2006 DOMOLOGIC Home Automation GmbH

DIMENSIONS AND CONNECTORS

DEVICE VARIANTS

Sales Type Power
Supply

Native
Core

Speed

Serial
Baud Rates

Flash
Organization

Back-
light

RTC

JCSD10 NS15-2 5V 2 MIPS 300-250.000bps 512x128x1 none Soft
JCSD10 BS15-2 5V 2 MIPS 300-250.000bps 512x128x1 blue Soft
JCSD10 WS15-2 5V 2 MIPS 300-250.000bps 512x128x1 white Soft
JCSD10 NS25-2 5V 2 MIPS 300-250.000bps 512x128x2 none Soft
JCSD10 BS25-2 5V 2 MIPS 300-250.000bps 512x128x2 blue Soft
JCSD10 WS25-2 5V 2 MIPS 300-250.000bps 512x128x2 white Soft
JCSD10 NS45-2 5V 2 MIPS 300-250.000bps 256x256x4 none Soft
JCSD10 BS45-2 5V 2 MIPS 300-250.000bps 256x256x4 blue Soft
JCSD10 WS45-2 5V 2 MIPS 300-250.000bps 256x256x4 white Soft
JCSD10 NS13-2 3,3V 2 MIPS 300-250.000bps 512x128x1 none Soft
JCSD10 BS13-2 3,3V 2 MIPS 300-250.000bps 512x128x1 blue Soft
JCSD10 WS13-2 3,3V 2 MIPS 300-250.000bps 512x128x1 white Soft
JCSD10 NS23-2 3,3V 2 MIPS 300-250.000bps 512x128x2 none Soft
JCSD10 BS23-2 3,3V 2 MIPS 300-250.000bps 512x128x2 blue Soft
JCSD10 WS23-2 3,3V 2 MIPS 300-250.000bps 512x128x2 white Soft
JCSD10 NS43-2 3,3V 2 MIPS 300-250.000bps 256x256x4 none Soft
JCSD10 BS43-2 3,3V 2 MIPS 300-250.000bps 256x256x4 blue Soft
JCSD10 WS43-2 3,3V 2 MIPS 300-250.000bps 256x256x4 white Soft

Table 1: Derivatives of the JControl/SmartDisplay

Fig. 1: Dimensions and Connectors of the JControl/S martDisplay

128x64 Graphic LCD

76.2mm

13

24
41

.9
m

m

12

1

JControl/SmartDisplay

3/18© 2003-2006 DOMOLOGIC Home Automation GmbH

GENERAL DESCRIPTION
The JControl/SmartDisplay is a member of the
JControl device family, designed as freely
programmable LC-Display with 128x64 pixel and
optional backlight, analog keyboard decoder,
external buzzer control, communication ports
(RS232 and I²C), general purpose I/Os, analog
inputs and pulse width modulator outputs. All
relevant signals are available by 24 pins at the left
and right edge of the device (0.1” strip
connectors). For evaluation purposes, an
evaluation board is available.

The JControl/SmartDisplay is based on the
JControl/GUI-Engine processor. The integrated
JCVM8 8 Bit JAVA™ bytecode execution engine
runs with 2 MIPS native speed, providing 16 Bit
processing word length, 2.5k JAVA heap memory,
automatic garbage collection and multi-threading
software execution. Applications in the field of
control, measurement and automation are
supported by specific extensions for soft-realtime
processing.

The JCVM8 offers a set of built-in classes,
providing fundamental support of the JAVA
programming language and access to all local
peripheral components like LCD, analog
keyboard, Flash memory etc. Extended support is
given by class libraries, linked automatically to the
application by the JControl/DevelopmentSuite.
This mechanism saves memory space, because
exclusively the required classes are loaded to the
system.

Application programs are loaded via a serial
communication interface to the Flash memory,
which is organized as one to four banks of
64kByte each. The banks may be used to store
application software or non-volatile data.

Various informations about the specific JControl
device and its current state is available by
accessing the system properties. In download
mode, the system properties may be read or
written by remote using the JControl Download
Protocol. Under normal operating conditions, the
system properties can be accessed by application
software using the methods getProperty and
setProperty of the built-in class
jcontrol.system.Management .

POWER SUPPLY AND SYSTEM RESET
The JControl/SmartDisplay is powered by 5V DC
or 3.3V DC, connected to the pins 12 (GND) and
24 (VCC) of the device. To ensure a reliable start
up phase, an integrated power-on reset generator
(POR) holds the reset signal of the JCVM8 and
LCD while the supply voltage is below the

threshold voltage of 4.50V or 3.00V resp. When
the supply voltage exceeds the threshold voltage,
the reset signal is released and the initialization
sequence of the JCVM8 is executed. When
finished, the JAVA-application stored in Flash bank
0 is started.

FLASH MEMORY ORGANIZATION
Depending on the device variant, the
JControl/SmartDisplay offers one to four banks of
64k Flash memory for application software or non-
volatile data, labeled as Flash bank 0 to Flash
bank 3. For devices with up to two flash banks,
the memory is organized as 512 sectors by 128
bytes, numbered from sector 0 to sector 511. For
devices with 4 Flash bank, the memory is
organized as 256 sectors by 256 bytes. The Flash
memory’s organization may be detected
automatically by reading the system property
flash.format . The returned string comprises of

the parameters <number of
sectors>x<bytes per sector>x<number
of banks> (e.g. "512x128x1" for the
JControl/SmartDisplay device with one flash
bank).

The Flash memory can be used to store non-
volatile data using the built-in class
jcontrol.io.Flash . It provides methods to
read and write complete sectors in any bank of
the Flash memory.

Fig. 2: JControl/SmartDisplay Block Diagram

JControlVM
(8bit)

FLASH
Memory

POR

128x64
Pixels

LCD

+

-

4.20V

PWM #3

/RESET

B
A

C
K

LI
G

H
T

BACKLIGHT

RESET

GPIO #4 / ADC #2

VCC

GPIO #2 / ADC #0

GPIO #5 / ADC #3

GPIO #7 / ADC #5

GPIO #3 / ADC #1

GPIO #6 / ADC #4

GND

BUZZER
GPIO #8 / ADC #6
GPIO #9 / ADC #7 / KB_IN

GPIO #0 / PWM #0
GPIO #1 / PWM #1

I2C_SCL
I2C_SDA

13

RS232_RXD

PWM #2

RS232_CTS

24
23
22
21
20
19
18
17
16

15
14

12

1
2
3
4
5
6
7
8
9

10
11

RS232_TXD

RS232_RTS

JControl/SmartDisplay

4/18 © 2003-2006 DOMOLOGIC Home Automation GmbH

Fig. 3 gives an overview of bank 0’s internal
structure: Application software is written upwards,
starting at physical sector 0 and non-volatile data
is stored downwards, starting at physical sector
510 (resp. 254 for devices with four flash banks).

This procedure reduces the possibility of resource
conflicts between application software and data.
To offer a linear ascending number of sectors
(starting at sector 0) to the application, the class
jcontrol.io.Flash maps access to the logical
sector 0 to the physical sector 510 of the Flash
memory, access to logical sector 1 to the physical
sector 509 and so on. The uppermost sector of
bank 0 (sector 511) is used to hold non-volatile
system properties. The same principle is also
used for Flash Bank 1, except that the uppermost
sector is not holding the system properties.

For applications using the flash memory
independently of the memory architecture, the
external class jcontrol.storage.
FlashStream is provided. It represents a
memory cached data stream for reading and
writing continuous data to or from the non-volatile
flash memory.

DOWNLOAD MODE
The system download mode is a fundamental
functionality of the JCVM8, implemented in every
JControl device. It is used for uploading
application software to and downloading data from
the Flash memory by a host computer, for auto
identification of the JControl device and for
reading or writing system properties by remote.
The download mode is used e.g. by the
development tools like JControl/IDE and
PropertyEdit.

The system download mode may be entered by
one of following four cases:

(1) Directly after the initialization sequence of the
JCVM8: If no valid application software is
available in bank 0 of the Flash memory, the
device enters the system download mode.

(2) During normal operating conditions: If the
virtual machine is restarted by the method
switchBank() of the built-in class
jcontrol.system.Management and the
new Flash bank contains no valid application
software.

(3) The system download mode may be enforced
by pulling Pin 13 (GPIO #9/KB_IN) to GND
while resetting the device (as shown in Fig. 5).
Refer to the chapter covering the Analog
Keyboard.

(4) The mode may also be started by software
calling the run() -Method of an instance of
the built-in class
jcontrol.system.Download .

In the first three cases, a splash screen appears
as shown in Fig. 4. The first line of the splash
screen gives information about the JControl
device profile (“JControl/SmartDisplay”). The
second line shows the build date of the JCVM8,
represented as format yyyyMMddhhmm
(yyyy =year, MM=month, dd=day, hh=hour,
mm=minute). The following “+0100” in the example
is optional and gives information about the time
zone. The build date is also available as system
property profile.date and used by the tools to
select an appropriate device profile. The bottom
line shows the parameters of the RS232 interface,
fixed to 19200 bps, 8 data bits, no parity and 1
stop bit.

Fig. 5: Entering the System Download Mode

� Pull signal KB_IN to GND (Pin 13), � activate RESET
signal for more than 10ms (Pin 22)

Fig. 3: Internal Structure of Flash bank 0
(For Devices with 1 or 2 Flash Banks with

512 Sectors per Bank)

JControl/SmartDisplay

KB_IN

+5V

"RESET"

GND

VCC

RESET

Fig. 4: Splash screen of the system download mode

Sector 1

Non-
volatile
Data

Sector 0

Sector 2

Sector 510
Sector 509

Sector 511

Application
Software

Properties

Physical SectorLogical Sector

Sector 0
Sector 1

Sector 2

JControl/SmartDisplay

5/18© 2003-2006 DOMOLOGIC Home Automation GmbH

Using the Download Mode by Applications

The built-in class jcontrol.system.Download
may be used to access or extend the download
functionality by application software, e.g. to
implement comfortable download or upload
features for specific applications.

When the system download mode is started by
software (see case 4), no splash screen appears
and the baud rate is set to the value held by the
system property rs232.baudrate (default:
19200bps). When quitting, the download mode
performs a system reset when data was written to
the flash memory. Otherwise it returns to the
calling application. See API documentation for
more information about this class.

DISPLAY
The JControl/SmartDisplay comes with a 128x64
pixel monochrome graphic LCD in FSTN
technology, optionally backlighted by a blue or
white LED. The display has a viewing direction of
6 o’clock and is driven by a separate display
controller (Samsung S6B1713), mounted as chip-
on-glass circuit on the top side of the component.
To obtain a high data bandwidth, the
communication between JCVM8 and display is
realized by an 8 bit parallel interface.

The built-in class jcontrol.io.Display offers
a set of methods for drawing pixels, lines,
rectangles, circles, images, characters and strings
on the display. It implements the interface
jcontrol.io.Graphics for hardware
abstraction. Images are supported using the pixel-
based JControl Image File format (JCIF, revision
0001); fonts have to be formatted using the pixel-
based JControl Font Definition format (JCFD,
revision 0002). The class
jcontrol.io.Display includes a proportional
system font (8 pixel font height) by default.

For detecting the display dimensions
automatically, the system property
display.dimensions returns a string
comprising the parameters
<width>x<height>x<colour_depth>,
specified by "128x64x1" for the

JControl/SmartDisplay device. The coordinates of
the display are organized from left to right and
from top to bottom counting from 0 to size-1, see
also Fig. 6.

The display contrast may be adjusted by software
using the system property display.contrast .
The value is saved to Flash memory, assuring
that it will be restored by the system during power-
up. The optional backlight LED of the display is
controlled directly by the reserved PWM channel
#2 of the JControl/GUI-Engine. For improved
hardware abstraction, the external class
jcontrol.io.Backlight is provided, enabling
to set the backlight in 256 steps from 0 (off) to 255
(max. brightness).

ANALOG KEYBOARD
The JControl/SmartDisplay provides a decoder for
analog keyboards with up to 10 keys. Analog
keyboards are designed as switched resistor
ladders, generating a specific voltage for each
key. This mechanism reduces the complexity
required to realize a keyboard to a minimum.

For the JControl/SmartDisplay, GPIO #9 is used
for connecting the analog keyboard (this pin is
also labeled as KB_IN). GPIO #9 is internally
connected to the ADC #7 pin of the JControl/GUI-
engine. The system software measures the
voltage at ADC #7 every 16ms, corresponding to
a keyboard request rate of 62.5Hz. The class
jcontrol.io.Keyboard provides methods for
reading the switched resistor on character basis,

including raw access, buffered access, automatic
repetition and acoustic feedback.

Fig. 7 shows the schematic of a simple cursor-
control key panel connected to the
JControl/SmartDisplay, realizing the keys up,
down, left and right. The pull-up resistor R1
(10kΩ) is used to apply a quiescent voltage of
VDDA (analog reference voltage) to the analog
channel, representing the passive state when all
keys are released. Each keypress creates a
specific voltage divider, composed by R1 and a
chain of resistors from R2 to the resistor
connected to the corresponding key. The resulting
voltage is measured via ADC #7 (KB_IN).

Fig. 6: Coordinates used by the LCD-class

128x64
Pixels

x

y

JControl/SmartDisplay

6/18 © 2003-2006 DOMOLOGIC Home Automation GmbH

Table 2 lists the resistor values for an analog
keyboard with up to 10 keys, using a pull-up
resistor R1 of 10kΩ. The voltage created by the
voltage dividers is increased by steps of VDDA/10,
starting at 0V. Because of resistor tolerances, the
resulting voltages and the measured ADC value
may differ in real applications. Hence, the
integrated keyboard decoder uses thresholds
between two theoretical values for key detection.

The keys decoded by the key panel shown in Fig.
7 are ‘up’, ‘down’, ‘left’, ‘right’ and ‘select’,
corresponding to the letters ‘U’, ‘D’, ‘L’, ‘R’ and ‘S’.
The letters are returned by the method read() of
the class jcontrol.io.Keyboard , when one of
the keys is pressed. The letters are defined by the
default keyboard map, that may be changed by an
application program for software compatibility
reasons.

Note that the keys are prioritized, i. e. always the
key with the lowest order number is decoded, if
various keys are pressed simultaneously. The first

key (letter ‘S’) is also used to enter the download
mode when pressed during reset.

Key
Nr.

Letter R Resistor
Value

V ADC
Value

1 ‘S’ 0Ω 0 0
2 ‘U’ R2 1100Ω 0.5 25
3 ‘D’ R3 1300Ω 1.0 50
4 ‘L’ R4 1800Ω 1.5 76
5 ‘R’ R5 2400Ω 2.0 102
6 ‘N’ R6 3300Ω 2.5 127
7 ‘P’ R7 5100Ω 3.0 153
8 ‘E’ R8 8200Ω 3.5 179
9 ‘H’ R9 16000Ω 4.0 204

10 ‘X’ R10 51000Ω 4.5 230

Table 2: Resistor values for the Analog Keyboard

Analog keyboards are not suitable for silicone
rubber keys, because of their varying and
pressure-dependent contact resistances. Use
external hardware, e.g. logic buffers, to reduce the
contact resistance in this case.

REAL TIME CLOCK (RTC)
The JControl/SmartDisplay implements a software
emulated Real Time Clock (RTC), controlled by
the system software. Hence, this “RTC” is clocked
by the on-board ceramic resonator. It provides
year, month, day, weekday, hours, minutes and
seconds. Besides the current time, an alarm time
is also provided. When the current time reaches
the alarm time, a dedicated alarm flag is set.

The built-in class jcontrol.system.RTC
implements methods for reading and writing the
current time and the alarm time. A time
information is represented by an instance of the
built-in class jcontrol.system.Time ,
combining the fields year, month, day, weekday,
hours, minutes and seconds.

BUZZER CONTROL
The JControl/SmartDisplay supports an external
buzzer, connectable to pin 10 of the device. The
buzzer may be used for acoustic signals
generated by the system or by an application.

The system will use the buzzer for acoustic
feedback on keyboard events and for signalling
system exceptions. Both features may be enabled
or disabled by using the system properties

buzzer.systembeep (system execeptions) and
buzzer.keyboardbeep . Additionally, an
application software may control the buzzer using
the external class jcontrol.io.Buzzer ,
implementing the interface
jcontrol.io.SoundDevice for hardware
abstraction. This class provides methods to
activate the buzzer using a specified frequency
(250...32767Hz) for a specified duration (in ms).

'S'

'U'

'D'

'L' 'R'

Fig. 7: Schematic of a cursor-control analog key pa nel

GPIO #9/KB_IN ...

'R'

R1
10kΩ

1100Ω 1300Ω 1800Ω

+5V

'S' 'U' 'D' 'L'

2400Ω

more keysR5R2 R3 R4

JControl/SmartDisplay

7/18© 2003-2006 DOMOLOGIC Home Automation GmbH

The system property buzzer.enable is provided
to enable or disable the buzzer when it is used by
an application. Furthermore, the external class
jcontrol.toolkit.iMelody is provided,
playing complete melodies given by the iMelody-
Format (IMY, published by the Infrared Data
Association, IrDA). The buzzer output is
connected internally to the reserved PWM
channel #3 of the JControl/GUI-engine.

As a buzzer, a simple piezo element may be
used, connected directly to Pin 10 of the
JControl/SmartDisplay. If a magnetic loudspeaker
is used, please provide a transistor for boosting
the output signal and a free wheeling diode to
block reverse voltages generated by the coil.

RS232 COMMUNICATION
The JControl/SmartDisplay provides a serial
communication interface with CMOS/TTL levels.
The signals are available at pin 1 (output signal
TXD) and pin 2 (input signal RXD) of the device.
Optionally, two signals for flow control are
available at pin 3 (output signal RTS) and pin 4
(input signal CTS).

The built-in class jcontrol.comm.RS232
provides methods for reading, writing and
configuring the RS232 interface. It supports
buffered read access and operates on byte ,
char , string and utf8 basis. Automatic
echoing is also supported by the readLine()
method.

The RS232 communication interface supports 11
different baud rates, starting from 300 up to
250.000bps including the MIDI-baud rate of
31250bps. The baud rate is changed using the
method setBaudrate() of the built-in class
jcontrol.comm.RS232 (see Table 3 for a list of
all valid settings). If an application attempts to set
an unsupported baud rate, always the fall-back
setting 19200bps is used. If no baud rate value is
set by the application, the default value specified
by the system property rs232.baudrate is
used.

Baud Rate Parameter for
setBaudrate

Comment

300 300
600 600

1200 1200
2400 2400
4800 4800
9600 9600

19.200 19200 Fall-back setting
31.250 31250 MIDI
62.500 62

125.000 125
250.000 250

Table 3: Supported Baud Rates

Additionally, the RS232 communication interface
supports a parity bit (9th data bit) as well as flow
control (by XON/XOFF or RTS/CTS). All options
are defined by the current communication
parameters, configured using method
setParams() of the built-in class
jcontrol.comm.RS232 . As shown in Fig. 8, the
options are combined to a single bitmask.
Appropriate constant field values are defined by
the class jcontrol.comm.RS232 . When the
parameters are not changed by the application
software, always the default settings specified by
the system property rs232.params are used.

The following parity modes are supported: “8N1”
(8 data bits, no parity, 1 stop bit), “8E1” (8 data
bits, even parity, 1 stop bit) and “8O1” (8 data bits,
odd parity, 1 stop bit). For flow control, two
different modes are supported: Software flow
control (by XON/XOFF) and hardware flow control
(by RTS/CTS). Software flow control uses the
ASCII-codes XON (0x11) and XOFF (0x13).
Hardware flow control is realized by the external
signals RS232_RTS (pin 3) and RS232_CTS (pin
4) of the JControl/SmartDisplay.

Fig. 8: RS232 Communication Parameters

e
1

f f

Flow Control
 = None
 = XON/XOFF
 = RTS/CTS
 = Reserved

 00
 01
 10
 11

Echo
 = Echo disabled
 = Echo enabled

 0
 1

LSBMSB

2481664

Parity
 = No Parity ()
 = Even Parity ()
 = Odd Parity ()
 = Reserved

 00
 01
 10
 11

N
E

O

p p
32

JControl/SmartDisplay

8/18 © 2003-2006 DOMOLOGIC Home Automation GmbH

I/O PINS (GPIO, PWM, ADC)
The JControl/SmartDisplay provides 12 general
purpose I/O (GPIO) signals for external hardware
control, numbered as GPIO #0 to GPIO #11. The
built-in class jcontrol.io.GPIO is provided to
control the I/Os, supporting four different
configuration modes:

� FLOATING: Standard digital input
� PULLUP: Digital input with integrated pull up

resistor (60k-240kΩ, cannot be influenced)
� PUSHPULL: Standard digital output
� OPENDRAIN: Digital output, set to high-

impedance state when HIGH

The output current of any pin must not exceed
25mA, independent of its usage (either source or
sink).

Four pins are connected to an integrated Pulse
Width Modulator (PWM), which provides a
resolution of up to 8 bits. This feature is controlled
by the built-in class jcontrol.io.PWM . The
generated signals are available via the PWM
channels 0 to 3. The device uses a single
frequency generator for all channels, hence the
frequency of the channels has to be the same.
The duty cycle of each PWM channel may be

adjusted individually. Please note that every pin
configured as PWM output is not available as
GPIO. ATTENTION: PWM channel 2 is hardwired
to the backlight LED of the LCD, which may have
an effect on peripheral hardware connected to this
pin.

Furthermore, eight pins are connected to the
internal 8-bit A/D converter and may be used as
analog inputs. The built-in class
jcontrol.io.ADC is provided to control this
feature. When a pin is used as analog input, it
should be configured to FLOATING mode using
the class jcontrol.io.GPIO . The reference
voltage for the ADC channels must be connected
to pins VDDA (high potential; pin 23) and GND (low
potential; pin 12) and may not exceed the supply
voltage.

Table 4 provides an overview on the features of
each pin described here. Two of the listed GPIOs
(#10 and #11) are provided to control the RS232
hardware flow signals RTS and CTS. Refer to
chapter “RS232 Communication” for more
information about this topic.

See the datasheet “JControl/GUI-Engine” for
further information about the GPIOs.

Device
Pin 1)

GPIO # PWM # ADC # Alternate
function

GPIO
configurations 2)

7 0 0 - - FI, PU, OD, PP
8 1 1 - - FI, PU, OD, PP
20 2 - 0 - FI, PU, OD, PP
19 3 - 1 - FI, PU, OD, PP
18 4 - 2 - FI, PU, OD, PP
17 5 - 3 - FI, PU, OD, PP
16 6 - 4 - FI, PU, OD, PP
15 7 - 5 - FI, PU, OD, PP
14 8 - 6 - FI, PU, OD, PP
13 9 - 7 KB_IN FI, PU, OD, PP
3 10 - - RS232_RTS PU
4 11 - - RS232_CTS FI, PU, OD, PP
- 122) - - - FI, PU, OD, PP
- 133) - - - FI, PU, OD, PP
9 - 2 - /BACKLIGHT -
10 - 3 - BUZZER -

Table 4: Features of universal I/O pins
1) A ‘-‘ indicates, that this GPIO is present but not available via a device pin. (For more information see datasheet: JControl/GUI-Engine)
2) FI = FLOATING input ; PU = Input with internal PULLUP resistor ; PP = PUSHPULL output ; OD = OPENDRAIN output
3) Reserved for internal use

JControl/SmartDisplay

9/18© 2003-2006 DOMOLOGIC Home Automation GmbH

I²C COMMUNICATION
A I²C/SMBus communication interface is available
at the port of the JControl/SmartDisplay.

The I2C bus is a de facto standard for on-board
inter-IC communication. It was developed by
Philips Semiconductors in the early 1980's. Many
integrated circuits are supporting the I²C bus.
SMBus is a kind of extended I²C bus, developed
by Intel in 1995 as System Management Bus. It is
used e.g. in personal computers and servers for
low-speed system management communications.
Mostly, the SMBus is used to interconnect the
sensors for temperatures, voltages, rotation speed
of fans etc.
The built-in class jcontrol.comm.I2C provides
methods for using the JControl device as bus

master. It supports 7 bit and 10 bit addressing
schemes as well as reading and writing single
chars or byte streams. It implements a simple
hardware layer, therefore any bus error and any
arbitration lost results in an IOException after a
few retries. To avoid blocking, the class
implements a bus timeout (in contrast to the I²C
bus specification).

The signal I²C_SCL (pin 5) is the clock signal of
the I²C bus (or SMBCLK of SMBus). The signal
I²C_SDA (pin 6) is the data signal of the I²C bus
(or SMBDAT of SMBus).

JCVM8 RESTRICTIONS
Not all JAVA features are implemented by the
JCVM8. The following list gives an overview on
the restrictions:

� Data type int is limited to 16 bit processing
word length (not 32 bit)

� Data types long , float and double are not
implemented. When used, one of the following
two error codes is generated (context
dependent):
� BytecodeNotSupportedError (6)
� UnsupportedArrayTypeError (9)

� The number of constants in the constant pool
is limited to 255 (will be checked by the
JCManager before upload)

� Cast check for primitive arrays is not
supported and causes an error
(NotImplementedError)

� It is not possible to call object methods on
primitive arrays, e.g.

 new int[25].equals(myObject)

� Some exceptions can not be catched by an
application, because they generate an error
code. When thrown, the JCVM8 is restarted in
error condition and the error handler is called
(see also chapter Error Codes).

� Implementation of classes in the package
java.lang is incomplete (see JControl
JAVADOC)

JControl/SmartDisplay

10/18 © 2003-2006 DOMOLOGIC Home Automation GmbH

ERROR CODES
When an exception is thrown and not handled by
the application, the JCVM8 generates an error
code. Some of the errors (listed in the following
Table 5) are specific to the JCVM8 and not
common in the JAVA programming language
(labeled with 1). Other error codes are masked
exceptions, because they are generated instead
of an exception (labeled with 2).

Every error restarts the JCVM8 in error condition.
Afterwards the method onError() of the built-in

class jcontrol.system.ErrorHandler is
invoked. More details about the error state is
passed by parameters to the onError() method.

The built-in error handler may be overwritten by a
user-defined error handler stored in Flash bank 0.
See the error handler included in the
SystemSetup software for demonstration.

Following table gives an overview on the error
codes generated by the JCVM8.

ID Name Description

1 HandleError 1) Internal VM error
2 NullPointerException 2) Attempt to use NULL where an object is required
3 OutOfMemoryError Generated when no memory is available
4 BytecodeNotAvailableError 1) Attempt to execute an invalid bytecode
5 BytecodeNotSupportedError 1) Attempt to execute an unsupported bytecode, e.g.

bytecodes for 64-bit arithmetic or floating point
processing

6 BytecodeNotDefinedError 1) Attempt to execute an undefined bytecode
7 ArithmeticException 2) Exception during arithmetic processing, e.g. division

by zero
8 NegativeArraySizeException 2) Attempt to create an array with negative size
9 UnsupportedArrayTypeError 1) Arrays of this type are not supported

10 ArrayIndexOutOfBoundsException 2) Array index is out of bounds
11 ClassCastException 2) Attempt to cast an object which is not of an

appropriate runtime type
12 NoCodeError 1) Thrown when a method is called that implements no

code
13 WaitForMonitorSignal 1) Used internally by the VM
14 ExternalNativeError 1) Generated when a native method is called that is not

stored in ROM
15 FatalStackFrameOverflowError 1) Generated when the stack size is not sufficent
16 InstantiationException 2) Attempt to instantiate an abstract class or interface
17 IllegalMonitorStateException 2) E.g. when a wait is called without an appropriate

monitor
18 UnsatisfiedPrelinkError 1) Error due to a failed prelinking process
19 ClassFormatError 1) Generated by an invalid class
20 ClassTooBigError 1) The size of a class exceeds the limitations
21 PreLinkError 1) Error due to a failed prelinking process
22 PreLinkedUnresolvedError 1) Error due to a failed prelinking process
23 UnsupportedConstantTypeError 1) Generated when the type of a constant is not

supported by the JCVM8 (long , float or double)
24 MalformatedDescriptorError 1) Error while dereferencing constant pool, e.g. due to

wrong class file format
25 RuntimeRefTableOverrunError 1) More class references used than specified in a class

file
26 NoSuchFieldError Referenced field not found
27 IllegalAccessError Tried to access a field or method from wrong scope

(e.g. private)
28 NoSuchMethodError Could not find referenced method
29 TooMuchParametersError 1) A method uses more parameters than supported by

the JCVM8 (max. 16)
30 ThrowFinalError 1) Uncatched user defined exception. Exception name

JControl/SmartDisplay

11/18© 2003-2006 DOMOLOGIC Home Automation GmbH

ID Name Description

is passed to the onError() method
31 NoClassDefFoundError 1) Unable to find a class by name
32 IndexOutOfBoundsException 2) Thrown by some methods using String or array

parameters and indices that are out of bounds
33 ArrayDimensionError 1) Generated when an array is created with more than

2 dimensions (only 1 and 2 dimensions supported)
34 DeadlockError 1) Generated by the JCVM8 scheduler when two or

more threads inheriting from each other
35 IncompatibleClassChangeError Generated when an interface is invoked for an

object, that is not implementing the interface
36 NotImplementedError 1) Generated when an unimplemented JAVA feature is

used

Table 5: Error Codes generated by the JCVM8

1) Error codes generated exclusively by the JCVM8. Not common in the JAVA programming language.

2) JCVM8 error codes generated by the JCVM8 instead of exceptions. Cannot be handled by an exception handler. May be replaced by
JAVA exceptions in future revisions of the JCVM8.

SYSTEM PROPERTIES
System properties providing specific information
about the JControl device. All properties are
identified by a fixed string (the content is always
formatted as string). The properties may be read
or written using the methods getProperty()
and setProperty() of the built-in class
jcontrol.system.Management . In download
mode, the tool PropertyEdit may be used to read
or write the properties by remote.

The system properties are categorized into ROM
properties and non-volatile properties. ROM
properties are stored in read-only memory of the
device and can not be changed. Non-volatile
properties are held in the upper sector of Flash
bank 0 and may be changed by software.

Key Type Value Description

profile.name String “JControl/SmartDisplay” JControl Profile Name
profile.date String “{yyyyMMddhhmm}" Date of JCVM build
system.heapsize Int 2688 Size of internal JAVA heap memory
flash.format String “512x128x1” Flash Organization

(bytes x blocks x banks)
io.gpiochannels Int 14 Number of GPIO channels
io.pwmchannels Int 4 Number of PWM channels
io.adcchannels Int 8 Number of ADC channels
display.dimensions String “128x64x1” Display dimensions

(width x height x colour_depth)

Table 6: ROM Properties (saved in ROM, read access only)

Key Type Range Default Description

system.userbank Int 0..1 0 Flash bank used for user application
rtc.poweronbank Int 0..1 0 Bank selected to start application after

power on initiated by RTC alarm
buzzer.enable Bool true, false true Enable or disable buzzer to be used by

application software
buzzer.systembeep Bool true, false true Enable or disable system sound

(set independent from buzzer.enable)

JControl/SmartDisplay

12/18 © 2003-2006 DOMOLOGIC Home Automation GmbH

Key Type Range Default Description

buzzer.keyboardbeep Bool true, false true Enable or disable keyboard beep
(set independent from buzzer.enable)

display.contrast Int 0..255 42 LCD contrast adjustment
rs232.params Int (see section

RS232
Communication:
Figure 8)

0 Bitmask holding RS232 configuration
� Bit 1:0 00 = No Parity

01 = PARITY_EVEN enabled
10 = PARITY_ODD enabled

� Bit 3 1 = ECHO enabled
� Bit 5:4 00 = No flow control

01 =
FLOWCONTROL_XONOFF

enabled
10 =

FLOWCONTROL_RTSCTS enabled
rs232.baudrate Int (see section

RS232
Communication:
Table 3)

19200 Sets default RS232 Baudrate

Table 7: Non-Volatile Properties (saved in Flash, r ead and write access)

SUPPORTED DATA FORMATS
The device supports following data formats:

Format
used for

Format
suffix

Rev. Description Used by class Editor

Images JCIF 0001 JControl Image File
8-Bit pixel-based image
definition format

jcontrol.io.Display PictureEdit

Fonts JCFD 0002 JControl Font Definition
8-Bit pixel-based font
definition format

jcontrol.io.Display FontEdit

Melodies IMY V1.2 iMelody
Melody format specified
by Infrared Data
Association (IrDA)

jcontrol.toolkit.iMelody MelodyEdit

Table 8: Supported Data Formats for the JControl/Sm artDisplay

The format specifications are available online at http://www.jcontrol.org.

JControl/SmartDisplay

13/18© 2003-2006 DOMOLOGIC Home Automation GmbH

BUILT-IN PACKAGES

Summary of Packages

Package Description

jcontrol.comm Complex communication features for JControl.

jcontrol.io Classes for basic I/O and peripheral control.

jcontrol.lang Replacement classes, fundamental to the design of the JAVA programming
language.

jcontrol.system JControl core classes and JControl specific JAVA extensions.

java.lang Provides classes that are fundamental to the design of the Java programming
language. Subset of the standard-package java.lang .

java.io Subset of the standard java.io -package
(only java.io.IOException)

Packages in Detail

Name Type Description

Package jcontrol.comm

ConsoleInputStream Interface Provides a set of high-level communication methods to read
from a console.

ConsoleOutputStream Interface Provides a set of high-level communication methods to write
to a console

RS232 Class Implements RS232 communication for JControl

Package jcontrol.io

ADC Class Control of JControls analog-digital converter. Used to
measure the voltage at portpins connected to the internal A/D
converter

BasicInputStream Interface Interface providing a set of low-level communication methods
for reading from a stream

BasicOutputStream Interface Interface providing a set of low-level communication methods
for writing to a stream

ComplexInputStream Interface Interface providing a set of high-level communication methods
for reading from a stream

ComplexOutputStream Interface Interface providing a set of high-level communication methods
for writing to a stream

Display Class Class to control the on-board 128x64 BW-LC-Display.
Coordinates are from left to right and from top to bottom
counting from 0 to size-1.

Drawable Interface Defines Object-behaviour for use with
jcontrol.io.Display.drawImage()

File Interface Provides a set of methods for file-system access

Flash Class Raw access to JControl’s integrated Flash memory. The
methods are designed to access complete sectors of memory,
not single bytes.

Graphics Interface Interface definition for graphics devices
(e.g. offscreen images, displays, ...)

I2C Class Controls I2C devices connected to JControl.

Keyboard Class Accesses JControl’s keyboard, the analog keyboard in the
case of the JControl/SmartDisplay

Portpins Class Controls available portpins of JControl

PWM Class Controls the Pulse Width Modulation outputs of JControl

JControl/SmartDisplay

14/18 © 2003-2006 DOMOLOGIC Home Automation GmbH

Name Type Description

Resource Class Implements read access to the application’s resource. The
resource stores additional application data like pictures, fonts,
text etc.

Package jcontrol.lang

Deadline Class Constructs a new JControl deadline, useful for soft real-time
applications

ThreadExt Class Thread extensions for JControl, useful for soft real-time
applications

Math Class Provides some simple math functions

Package jcontrol.system

Download Class Manages to download new JAVA applications to a JControl
module

ErrorHandler Class The JControl Error-Handler. May be overwritten to implement
more comfortable error handlers.

Management Class Controls various system management functions

RTC Class Access to JControl’s integrated Real Time Clock

Time Class The Time object stores a date and time.

Package java.lang

Exception Class The class Exception and its subclasses are a form of
Throwable , indicating conditions that a reasonable
application might want to catch

Integer Class The Integer class wraps a value of the primitive type int in
an object. An object of type Integer contains a single field
whose type is int .

Object Class Class Object is the root of the class hierarchy. Every class
has Object as a superclass. All objects, including arrays,
implement the methods of this class.

Runnable Interface The Runnable interface should be implemented by any class
whose instances are intended to be executed by a thread. The
class must define a method of no arguments called run .

String Class The String class represents character strings. All string
literals in JAVA programs, such as "abc" , are implemented as
instances of this class

Thread Class A Thread is a thread of execution in a program. The JAVA

Virtual Machine allows an application to have multiple threads
of execution running concurrently.

Throwable Class The Throwable class is the superclass of all errors and
exceptions in the JAVA language. Only objects that are
instances of this class (or one of its subclasses) are thrown by
the JAVA Virtual Machine or can be thrown by the JAVA throw
statement. Similarly, only this class or one of its subclasses
can be the argument type in a catch clause.

JControl/SmartDisplay

15/18© 2003-2006 DOMOLOGIC Home Automation GmbH

MECHANICAL DATA

PIN ASSIGNMENT

Pin Name Description

1 RS232_TXD Transmit Data output of RS232 interface
2 RS232_RXD Receive Data input of RS232 interface
3 GPIO #10

RS232_RTS
� GPIO channel #10

� Input modes: PULLUP
� Output modes: -

� Ready To Send handshake output of RS232 interface
4 GPIO #11

RS232_CTS
� GPIO channel #11

� Input modes: FLOATING or PULLUP
� Output modes: PUSHPULL or OPENDRAIN

� Clear To Send handshake input of RS232 interface
5 I²C_SCL Clock Signal of I²C-Bus (SMBCLK of SMBus)
6 I²C_SDA Data Signal of I²C-Bus (SMBDAT of SMBus)
7 GPIO #0

PWM #0
� GPIO channel #0

� Input modes: FLOATING or PULLUP
� Output modes: PUSHPULL or OPENDRAIN

� PWM channel #0

Fig. 9: Mechanical Data of JControl/SmartDisplay
(All sizes in mm)

71.1

35
.6

13

24

41
.9

12

1
6.35

76.22

2.
54

2.54
2.54

6.352.54
2.54

JControl/SmartDisplay

16/18 © 2003-2006 DOMOLOGIC Home Automation GmbH

Pin Name Description

8 GPIO #1
PWM #1

� GPIO channel #1
� Input modes: FLOATING or PULLUP
� Output modes: PUSHPULL or OPENDRAIN

� PWM channel #1
9 PWM #2

/BGLIGHT
� PWM channel #2
� BACKLIGHT LED control output

� Internally connected to PWM channel #2 and to the LCD backlight LED
10 PWM #3

BUZZER
� PWM channel #3
� Buzzer control output

� Internally connected to PWM channel #3
11 n/c reserved for future use
12 GND Ground Voltage (also low potential of the analog reference voltage)
13 GPIO #9

ADC #7
KB_IN

� GPIO channel #9
� Input modes: FLOATING or PULLUP
� Output modes: PUSHPULL or OPENDRAIN

� ADC channel #7
� Analog Keyboard Input

14 GPIO #8
ADC #6

� GPIO channel #8
� Input modes: FLOATING or PULLUP
� Output modes: PUSHPULL or OPENDRAIN

� ADC channel #6
15 GPIO #7

ADC #5
� GPIO channel #7

� Input modes: FLOATING or PULLUP
� Output modes: PUSHPULL or OPENDRAIN

� ADC channel #5
16 GPIO #6

ADC #4
� GPIO channel #6

� Input modes: FLOATING or PULLUP
� Output modes: PUSHPULL or OPENDRAIN

� ADC channel #4
17 GPIO #5

ADC #3
� GPIO channel #5

� Input modes: FLOATING or PULLUP
� Output modes: PUSHPULL or OPENDRAIN

� ADC channel #3
18 GPIO #4

ADC #2
� GPIO channel #4

� Input modes: FLOATING or PULLUP
� Output modes: PUSHPULL or OPENDRAIN

� ADC channel #2
19 GPIO #3

ADC #1
� GPIO channel #3

� Input modes: FLOATING or PULLUP
� Output modes: PUSHPULL or OPENDRAIN

� ADC channel #1
20 GPIO #2

ADC #0
� GPIO channel #2

� Input modes: FLOATING or PULLUP
� Output modes: PUSHPULL or OPENDRAIN

� ADC channel #0
21 n/c reserved for future use
22 /RESET Reset input, active low
23 VDDA Reference voltage for ADC channels (high potential)
24 VCC Power Supply (5V or 3.3V DC)

Table 9: Pin Assignment of JControl/SmartDisplay

JControl/SmartDisplay

17/18© 2003-2006 DOMOLOGIC Home Automation GmbH

Fig. 10: Schematic of the JControl/SmartDisplay

5 5

4 4

3 3

2 2

1 1

D
D

C
C

B
B

A
A

JControl/SmartDisplay

18/18 © 2003-2006 DOMOLOGIC Home Automation GmbH

NOTES

Information furnished is believed to be accurate and reliable. However, DOMOLOGIC Home Automation GmbH assumes no
responsibility for the consequences of use such information nor for any infringement of patents or other rights of third parties which may
result from its use. No license is granted by implication or otherwise under any patent or patent rights of DOMOLOGIC Home
Automation GmbH. Specifications mentioned in this publication are subject of change without notice. This publication supersedes and
replaces information previously supplied. DOMOLOGIC Home Automation GmbH products are not authorized to use as critical
components in life support devices or systems without express written approval of DOMOLOGIC Home Automation GmbH.

© 2003-2006 DOMOLOGIC Home Automation GmbH – All Rights Reserved

